Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton.
نویسندگان
چکیده
The mechanical properties of the living cell are intimately related to cell signaling biology through cytoskeletal tension. The tension borne by the cytoskeleton (CSK) is in part generated internally by the actomyosin machinery and externally by stretch. Here we studied how cytoskeletal tension is modified during stretch and the tensional changes undergone by the sites of cell-matrix interaction. To this end we developed a novel technique to map cell-matrix stresses during application of stretch. We found that cell-matrix stresses increased with imposition of stretch but dropped below baseline levels on stretch release. Inhibition of the actomyosin machinery resulted in a larger relative increase in CSK tension with stretch and in a smaller drop in tension after stretch release. Cell-matrix stress maps showed that the loci of cell adhesion initially bearing greater stress also exhibited larger drops in traction forces after stretch removal. Our results suggest that stretch partially disrupts the actin-myosin apparatus and the cytoskeletal structures that support the largest CSK tension. These findings indicate that cells use the mechanical energy injected by stretch to rapidly reorganize their structure and redistribute tension.
منابع مشابه
Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading.
Cell adhesion to the extracellular matrix triggers the formation of integrin-mediated contact and reorganization of the actin cytoskeleton. Examination of nascent adhesions, formed during early stages of fibroblast spreading, reveals a variety of forms of actin-associated matrix adhesions. These include: (1). small ( approximately 1 microm), dot-like, integrin-, vinculin-, paxillin-, and phosph...
متن کاملIs There any Mean to Postpone The Menopausal Ovarian Senescence?
The ovarian reserve (OR) gradually decreases throughout the female fertile life. This continuous depletion in OR is irreversible. This occurs through a programmed cell death known apoptosis. Some factors hasten such depletion such as chemo- and radiotherapy. Others have been investigated in trials to preserve the OR including gonadotropins, cytokines, growth hormones, nitric oxide and reorganiz...
متن کاملImmunocytochemical Study on Microtubule Reorganization in HL-60 Leukemia Cells Undergoing Apoptosis
Background: Microtubules (MT) are important components of cell cytoskeleton and play key roles in cell motility mitosis and meiosis. They are also the targets of several anticancer agents which indicating their importance in maintaining cell viability. Microtubular reorganization contributing to apoptotic morphology occurs in normal and neoplastic cells undergoing apoptosis induced by cytotoxic...
متن کاملJNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells.
Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothel...
متن کاملMechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments.
The growth-promoting effect of mechanical stress on vascular smooth muscle cells (VSMCs) has been implicated in the progress of vascular disease in hypertension. Extracellular signal-regulated kinases (ERKs) have been implicated in cellular responses, such as vascular remodeling, induced by mechanical stretch. However, it remains to be determined how mechanical stretch activates ERKs. The cytos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 95 1 شماره
صفحات -
تاریخ انتشار 2008